题意翻译
给你一棵树,每次挑选这棵树的两个叶子,加上他们之间的边数(距离),然后将其中一个点去掉,问你边数(距离)之和最大可以是多少.
题目描述
You are given an unweighted tree with n n n vertices. Then n−1 n-1 n−1 following operations are applied to the tree. A single operation consists of the following steps:
- choose two leaves;
- add the length of the simple path between them to the answer;
- remove one of the chosen leaves from the tree.
Initial answer (before applying operations) is 0 0 0 . Obviously after n−1 n-1 n−1 such operations the tree will consist of a single vertex.
Calculate the maximal possible answer you can achieve, and construct a sequence of operations that allows you to achieve this answer!
输入输出格式
输入格式:The first line contains one integer number n n n ( 2<=n<=2⋅105 2<=n<=2·10^{5} 2<=n<=2⋅105 ) — the number of vertices in the tree.
Next n−1 n-1 n−1 lines describe the edges of the tree in form ai,bi a_{i},b_{i} ai,bi ( 1<=ai 1<=a_{i} 1<=ai , bi<=n b_{i}<=n bi<=n , ai≠bi a_{i}≠b_{i} ai≠bi ). It is guaranteed that given graph is a tree.
输出格式:In the first line print one integer number — maximal possible answer.
In the next n−1 n-1 n−1 lines print the operations in order of their applying in format ai,bi,ci a_{i},b_{i},c_{i} ai,bi,ci , where ai,bi a_{i},b_{i} ai,bi — pair of the leaves that are chosen in the current operation ( 1<=ai 1<=a_{i} 1<=ai , bi<=n b_{i}<=n bi<=n ), ci c_{i} ci ( 1<=ci<=n 1<=c_{i}<=n 1<=ci<=n , ci=ai c_{i}=a_{i} ci=ai or ci=bi c_{i}=b_{i} ci=bi ) — choosen leaf that is removed from the tree in the current operation.
See the examples for better understanding.
输入输出样例
31 21 3
32 3 32 1 1
51 21 32 42 5
93 5 54 3 34 1 14 2 2
Solution:
昨天学长讲课的题目,思路贼有意思。
我们先打表$O(n^3)$枚举答案,枚举到$n=11$时会发现后面答案每次加$49$,这样就可以直接乱搞了。
代码:
1 #include2 #include 3 #include 4 #define il inline 5 #define ll long long 6 #define For(i,a,b) for(int (i)=(a);(i)<=(b);(i)++) 7 #define Bor(i,a,b) for(int (i)=(b);(i)>=(a);(i)--) 8 using namespace std; 9 using namespace __gnu_pbds;10 int n;11 ll ans;12 gp_hash_table mp;13 14 il int solve(int x){15 int ans,tot=0;16 for(int i=0;i<=x;i++) for(int j=0;i+j<=x;j++) for(int k=0;i+j+k<=x;k++){17 ans=i+j*5+k*10+(x-i-j-k)*50;18 if(!mp[ans]) mp[ans]=1,tot++;19 }20 return tot;21 }22 23 int main(){24 ios::sync_with_stdio(0);25 cin>>n;26 n<=11?printf("%d\n",solve(n)):printf("%lld\n",solve(11)+1ll*(n-11)*49);27 return 0;28 }